Impact of Neem and Extracts of Some Plants on Development and Fecundity of *Aphis Gossypii* Glover (Homoptera: Aphididae)

Selime OLMEZ BAYHAN¹, Erol BAYHAN² and M. Rifat ULUSOY³

¹Dicle University, Agricultural Faculty, Plant Protection Department, Diyarbakir, Turkey
²Trakya University, Agricultural Faculty, Plant Protection Department, Tekirdag, Turkey
³Cukurova University, Agricultural Faculty, Plant Protection Department, Adana, Turkey

Abstract

Cotton farmers in the Mediterranean region, Turkey, have used synthetic insecticides against the cotton aphid for many decades. The plant extracts and neem clearly reduced adult longevity, survival rate, fecundity, and life table parameters. The highest survival rate was obtained for the control aphid, following on treated with Red gum (67.62 %), and with California pepper tree (87.64 %), while the aphid treated with neem this rate was zero. Fecundity always tended to be higher in untreated of the aphid than in the treated with plant extracts. Production of offspring from treated adult aphid was lower than that of the control aphid.

Key words: *Aphis gossypii*, neem, plant extract, fecundity

Introduction

Cotton aphid, *Aphis gossypii* Glover, is a polyphagous pest and causes extensive damage to cotton in the world. Nymph and adult of the cotton aphid feed that causes direct and indirect damage. The cotton aphid, *Aphis gossypii* Glover, has been identified as one of the major pests in cotton areas in Turkey (Ozgur and Sekeroglu, 1986; Kersting et al., 1999) as now in many production area of the world (Akey and Butler, 1989; dos Santos et al., 2004).

Synthetic insecticides have been used against the cotton aphid for many decades...
by cotton farmers in the Mediterranean region, Turkey. Especially, use of synthetic insecticides frequently leads to a destabilization of the ecosystem and to enhanced resistance to insecticides in pests (Dittrich et al., 1990). New techniques for controlling pests are needed. Many researchers have been working alternative methods against chemical methods. Also, one of the alternative methods is biopesticide. The neem tree, *Azadirachta indica* A. Juss, and its products have the potential to help in this situation (Schmutturer, 1995; Lowery et al., 1993; Basedow et al., 2002). Several works have been carried out on the effect of neem insecticides on aphids (Schauer, 1987; Stark and Rangus, 1994; Lowery and Isman, 1995, 1996; Losch et al., 1998; Ulrichs et al., 2001; El Shafie and Basedow, 2003).

There were little works on botanical pesticides against pests in Turkey (Tuncer and Aliniazee, 1998; Baspinar et al., 2000; H?ncal et al., 2000; Madanlar et al., 2000; Ulusoy and Bayhan, 2002; Durmusoglu et al., 2003; Bulut and Madanlar, 2004; Akca et al., 2005, Kivan, 2005).

The aim of this work was to evaluate the effects of some plant extracts and neem on the development and fecundity of *A. gossypii* on cotton. It was also the objective of this research to determine if some plants extracts have potential on effect development and fecundity of the cotton aphid.

Materials and Methods

Plants. The host plants were reared at 25 °C, a relative humidity 65 ± 5 %, and light regime (16 L : 8 D) in laboratory conditions. Seeds of cotton (cv. Cukurova 1518) were sown in 12 x 22 cm pot in soil in the laboratory conditions. Plants were watered once a week. At 4-6 week of age, when the plants had acquired several true leaves, the plants were used in this study.

Insects. *A. gossypii*, originally obtained from on cotton (cv. Cukurova 1518) fields in Adana, Turkey, was colonized on cotton (cv. Cukurova 1518) at 25 °C, 65 ± 5 % relative humidity, and 16 L : 8 D light regime in a climatic room. The aphids had been reared in laboratory conditions for about 10 month before individuals were used in the experiments.

Chemicals. The extracts of *Schinus molle* L. and *Eucalyptus camaldulensis* Dehnh. leaves were used in laboratory studies. The extracts were prepared by cut in to parts and soaking the leaves for 24 hours. The concentration was 200 gr. Leaves/1000 ml water for each plant species. NeemAzal T/S® (NA) (Trifolio-N, GmbH, Lahnau, Germany) was prepared as recommended (0.5 %) in trials. NeemAzal-T/S was used at 5 ml/1 l of water. In order to evaluate the effect of neem on the cotton aphid, the extracts were prepared beforehand, 2 hours prior to laboratory experiments.

Laboratory experiments. All experiments were carried out on cotton plants 65 ± 5 % relative humidity, and a light-dark cycle of 16 L : 8 D in a climatic cupboard. Leaf discs (5 cm in diameter) were cut out from the center of cotton leaves, cv. Cukurova 1518, from the plant rearing room plants, which were dipped in 0.5 % NeemAzal T/S® (hereafter named NA) (standard treatment), California pepper tree, *Schinus molle* L. extract (hereafter named CPT) (200 gr. leaves/1 l water), and Red gum, *Eucalyptus camaldulensis* Dehnh. extract (200 gr. lea-
Impact of Neem and Extracts of Some Plants on Development...

ves/ 1 liter water) for 30 second. Then, they placed on each petri-dish and were used after they were allowed to air-dry for 45 min at laboratory conditions. Also, the cotton leaf discs dipped in distilled water were used as the untreated control.

Randomly selected apterous females from the stock culture were transferred separately onto an treated cotton leaf disc, placed upside down on wet filter paper in each Petri dishes. The nymph born within 24 h from the Petri dish was transferred individually to each of the fresh-cut treated cotton leaf discs in a Petri dish (6 cm diameter x 1.5 cm deep) with a small camel's-hair brush, and placed in a climatic cupboard under constant temperature of 25 °C, with 65 ± 5 % R.H., in 16 : 8 (L : D) photoperiod. The filter papers in the Petri dishes were wetted daily. Every four days the cotton leaf discs were changed to the new leaf discs were not treated with plant extracts and neem treatments. The nymph on each petri-dish was checked under a stereoscopic microscope, and this was recorded as observed on daily basis. The presence of the discarded exuviae were used to determine when molting had occurred. Daily observations were made on the number of molts undergone by the cotton aphids, including those individuals that died before reaching adult stage and the survival period was evaluated. Also, we determined that the developmental time of immature stage, mortality rate, and fecundity were measured. These studies were replicated three times for each treatment including each replication containing fifty leaf discs and compared with untreated controls.

Data Analysis. Effects of different neem and some plant extracts on biology of the cotton aphid were assessed by constructing a life table, using age-specific survival rates \((l_x)\) and fecundity \((m_x)\) for each age interval \((x)\) per day. Net reproductive rate \((R_0) = \Sigma l_x m_x\), mean generation time
\[T_0 = \frac{\Sigma (x l_x m_x)}{\Sigma l_x m_x} \]
and growth potential of a population under a given set of laboratory conditions
\[\Sigma e^{-r x} l_x m_x \] were calculated (Birch, 1948). In addition, life table parameters of *A. gossypii* were calculated from the data collected by a computer program TWOSEX (Chi 1997).

\[\begin{align*}
T_0 &= \frac{\Sigma (x l_x m_x)}{\Sigma l_x m_x} \\
R_0 &= \Sigma l_x m_x \\
\ln &= \frac{\Sigma (x l_x m_x)}{\Sigma l_x m_x}
\end{align*} \]

\[x = \text{each age interval per day} \]

\[l_x = \text{using age-specific survival rates} \]

\[m_x = \text{nymphs per female per day (female/female/day)} \]

\[R_0 = \text{net reproductive rate} \]

\[T_0 = \text{mean generation time} \]

\[r_m = \text{intrinsic rate of increase} \]

Data on nymphal development times, adult life span, fecundity, and daily reproduction at 4 constant temperatures were analyzed SPSS and treatment differences were determined by Tukey's Tests. Differences at probability level \((P < 0.05)\) were considered significant.

Results and Discussion

A. gossypii nymphs exposed to plant extracts showed to have longer developmental times than the aphid nymphs submitted to the control treatment (Table 1). Our data show that *A. gossypii* nymphs were highly susceptible to NA (Table 1). When the 1st nymph feeds on cotton leaf discs treated NA, no survival except 1st nymphs was observed (Table 1). Nymphs treated with NA survived only until the first
Table 1

Developmental times (days) of immature stages of *Aphis gossypii* on cotton treated with neem (NeemAzal T/S) and plant extracts at 25 °C, laboratory condition

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>Nymhal period</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeemAzal T/S</td>
<td>1.98 ± 0.064 c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NeemAzal T/S</td>
<td>1.58 ± 0.085 a 1.11 ± 0.056 a 1.94 ± 0.040 a</td>
<td>6.00 ± 0.094 b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red gum</td>
<td>1.86 ± 0.052 b 1.13 ± 0.052 a</td>
<td>6.02 ± 0.082 b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPT</td>
<td>1.57 ± 0.072 a 1.06 ± 0.036 a</td>
<td>5.59 ± 0.072 a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>1.57 ± 0.072 a 1.19 ± 0.050 a 1.16 ± 0.036 a</td>
<td>5.59 ± 0.072 a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Within columns, means with the same letters are not significantly different at P<0.05 (Tukey’s range test).

Table 2

The survival rate, adult longevity, biological cycle, and fecundity of *Aphis gossypii* on cotton treated with neem (NeemAzal T/S) and plant extracts at 25 °C, laboratory condition

<table>
<thead>
<tr>
<th></th>
<th>Survival rate, %</th>
<th>Adult longevity</th>
<th>Biological cycle</th>
<th>Fecundity</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeemAzal T/S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Red gum</td>
<td>67.62 ± 0.431 a 26.05 ± 0.430 a</td>
<td>43.20 ± 1.072 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPT</td>
<td>87.64 ± 0.290 a 25.90 ± 0.265 a</td>
<td>37.09 ± 0.952 a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>94.26 ± 0.183 b 27.61 ± 0.181 b</td>
<td>46.51 ± 0.774 c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Within columns, means with the same letters are not significantly different at P<0.05 (Tukey’s range test).

Table 3

Life table parameters of *Aphis gossypii* on cotton treated with neem (NeemAzal T/S) and plant extracts at 25 °C, laboratory condition

<table>
<thead>
<tr>
<th></th>
<th>r_m</th>
<th>R_o</th>
<th>T_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeemAzal T/S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Red gum</td>
<td>0.2965</td>
<td>29.04</td>
<td>13.94</td>
</tr>
<tr>
<td>CPT</td>
<td>0.3223</td>
<td>32.6</td>
<td>13.55</td>
</tr>
<tr>
<td>Control</td>
<td>0.3475</td>
<td>43.72</td>
<td>14.30</td>
</tr>
</tbody>
</table>

instar and after this stage 100 % mortality was observed (Table 1). The total immature developmental times of nymphs feeding on cotton leaves discs
treated with plant extract were higher than that of the control group (Table 1).

The plant extracts and neem clearly reduced adult longevity, survival rate, fecundity, and life table parameters (Table 1-2-3). The first, second, third, and fourth nymphs calculated on control leaves average 1.6, 1.2, 1.0, and 1.8 days, respectively (Table 1). These results are similar to those found by Xia et al. (1999), Michelloto (2002), and dos Santos et al. (2004). The total immature developmental time of the cotton aphid on non treated leaves lasted 5.59 days that is close those obtained by Akey and Butler Junior (1989), Kersting et al. (1999), Tang et al. (2002) and dos Santos et al. (2004) for A. gossypii reared on cotton at 25 °C.

The highest survival rate was obtained for the control aphid, following on treated with Red gum (67.62 %), and with CPT (87.64 %), while the aphid treated with neem this rate was zero (Table 2). There was a very significant difference in fecundity capacity of the cotton aphid treated and non-treated (Table 2). Fecundity always tended to be higher in untreated of the aphid than in the treated with plant extracts (Table 2). In our study, the plant extracts and neem reduced both the fecundity and life table parameters (r_m, R_o, and T_o) of the cotton aphid. Production of offspring from treated adult aphid was lower than that of the control aphid. The similar results were also observed the treatment with neem on Aphis fabae (Dimetry and Schmidt, 1992), on Myzus persicae, Nasonovia ribisnigri, Hopalusphum padi (Lowery and Isman, 1996), Myzocallis coryli (Tuncer and Aliniazee, 1998), Brevicoryne brassicae (Pavela et al., 2004), and A. gossypii (dos Santos et al., 2004).

We obtained our data that r_m was higher in control aphid than in treated plant extract aphid. The highest r_m was obtained for adult in the control with 0.3475, while the aphid treated with neem this rate was zero (Table 3). Our r_m data obtained in control aphid was similar to this obtained by Kersting et al. (1999).

Conclusions

Because of increasing problems associated with the use of acutely toxic synthetic insecticides, there is a pressing need for the development of safer, alternative crop protectants such as botanical insecticides. Neem is efficient against the cotton aphid in alternative control methods. The plant extracts in this study influence the survival rate, adult longevity, biological cycle, and fecundity of Aphis gossypii.

Acknowledgements

We thank to Prof. Dr. Hsin CHI to analysis data of life table in this study.

References

Basedow, T., H. R. Oliewatsch, J. A. Bernal Vega, S. Kollmann, H. A. F. El Shafie and C. M. Y. Nicol, 2002. Control of aphids and whiteflies (Homoptera: Aphididae and Aleyrodidae) with different neem prepara-

Impact of Neem and Extracts of Some Plants on Development...

(Homoptera: Aleyrodidae) on various cotton cultivars in Cukurova, Turkey. *Agriculture Ecosystems and Environment*, 17: 83-88 (Tr).

Received July, 10, 2006; accepted September, 23, 2006.