EFFECT OF SOME FACTORS ON THE LIVE WEIGHT IN SHEEP AT DIFFERENT AGES FROM THE NORTHEAST BULGARIAN FINE FLEECE BREED – SHUMEN TYPE

G. STAIKOVA and N. STANCHEVA
Agricultural Institute, BG-9700 Shumen, Bulgaria

Abstract

A study was carried out in order to establish the influence of some sources of specific variance on the live weight in 1981 sheep at different ages, from the Northeast Bulgarian fine fleece breed – Shumen type, born during the period 1990 – 2005. All estimations and the variance analysis were done on the basis of multifactor linear statistical models (Harvey, 1990). The year of birth significantly influenced the live weight at all ages studied. Differentiation between the breeding lines by the live weight was established. The type of mating did not significantly influence the live weight.

Key words: live weight, year of birth, breeding lines, variability

Introduction

The fine fleece breeds preserved in Bulgaria have been considerably reduced, but they are still a valuable gene pool. The analysis of the current state of the fine fleece sheep breeding in Bulgaria requires a new breeding policy with purpose of increasing the economic effectiveness. It is necessary to elaborate a strategy for developing the sub-branch on the basis of modern investigations, analyses, and estimations of the level of genetic diversity. The optimal level of the live weight is very important as the live weight directly influences the financial results and the rest productive traits. The effect of genetic and environmental factors on the live weight in the fine fleece breeds was discussed by Boikovski (1993, 1994, 2006), Todorova (1996), Dimitrov (1998), Chincheva (2000), Dimitrov et al. (2001), Iliev (1998, 1999, 2001, 2003, 2006), Panayotov (2002), Slavova (2000, 2002), Slavov (2001, 2007, 2008), Stancheva et al. (2005) and Snuman et al. (1996). The dynamics of the phenotypic realization of the live weight in the fine fleece sheep requires objective estimation.

The objective of this study was to establish the effect of some sources of specific variance on the live weight at different ages in sheep from the Northeast Bulgarian fine fleece breed – Shumen type.

Material and Methods

Subject of the study were 1981 sheep from the Northeast Bulgarian fine fleece breed – Shumen type at different ages, from 19 genealogical lines, for a period of 19 years (1990 – 2005).
The results of the live weight values were analyzed at the following ages: 100 days (at weaning), 9 months, 1.5 year, 2.5 years, 3.5 years, 4.5 years, 5.5 years and 6.5 years. The information from the breeding books was used. The data was obtained by the standard methods and directions provided by the Instruction on control of productive traits and complex assessment of the fine fleece sheep breeds (2008).

All estimations and variance analysis were done by multifactor linear statistical models (Harvey, 1990).

Results and Discussion

The data shows that the live weight of lambs from the Northeast Bulgarian fine fleece breed – Shumen type is average 26.856 kg (Table 1). In comparison with the results for this breed and other fine fleece breeds raised in Bulgaria, the abovementioned live weight is lower than the data of Boikovski (1993) for the same breed and for lambs from the Caucasian breed and also lower than the results of Slavova (2002) for the Thracian fine fleece breed. Chincheva (2000) reported about higher live weight for the same breed and Slavov (2008) – for the other intrabreed type of the Northeast Bulgarian fine fleece breed – the Dobrudzha type. Iliev (2003, 2006) reported results lower than our value for the Karnobat fine fleece breed and Todorova (1996) – for the Ascanian breed. The average live weight increased up to 73.548 kg at 6.5 years of age. The average live weight at 9 months of age (51.395 kg) was 84.64% of the average live weight of ewe lambs, which demonstrated high growth rate at young age. The early sexual maturity can be proved by the correlation between the average live weight of the ewe lambs and the animals at 4.5 years of age. The average live weight (60.727 kg) at 1.5 year reached 88.67% of the live weight at 4.5 years of age and exceeded by 21.45% the standard requirements according to the Instruction on control of productive traits and complex assessment of the fine fleece sheep breeds (2008). The variation coefficient was the highest at weaning (14.13%). It was lower for the other ages and was within the range from 5.86% to 10.14%. It was a logical consequence of the selection practice by using linear breeding as a basic method for improving the breed. Lambs with lower live weight were left for breeding purposes in order to preserve the linear structure of the herd. The values of the mean accuracy E were low – from 0.11% to 1.05% and showed that the results were representative for the whole population.

The year of birth influenced the live weight at all ages studied (Table 2), highly significant ($P<0.001$) up to 4.5 years and significant ($P<0.05$) at the rest ages. The values of F – criteria were especially high at 9 months of age and 1.5 year, which showed that the live weight highly depended on the conditions at earlier age. The sire’s line was one of the genetic factors which significantly influenced the live weight from 9 months to 5.5 years of age with different degree of significance ($P<0.001$, $P<0.01$, $P<0.05$). The type

<table>
<thead>
<tr>
<th>Traits</th>
<th>Sources of variance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>year of birth</td>
</tr>
<tr>
<td>Live weight</td>
<td>at 100 days of age</td>
</tr>
</tbody>
</table>

Table 1

Average values for the live weight by ages in sheep from the Northeast Bulgarian breed - Shumen type

<table>
<thead>
<tr>
<th>Age</th>
<th>n</th>
<th>x</th>
<th>C</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>At weaning</td>
<td>1974</td>
<td>26.856</td>
<td>14.13</td>
<td>0.32</td>
</tr>
<tr>
<td>At 9 months of age</td>
<td>1922</td>
<td>51.395</td>
<td>8.49</td>
<td>0.20</td>
</tr>
<tr>
<td>At 1.5 year of age</td>
<td>1697</td>
<td>60.727</td>
<td>10.14</td>
<td>0.25</td>
</tr>
<tr>
<td>At 2.5 years of age</td>
<td>1207</td>
<td>62.629</td>
<td>9.77</td>
<td>0.28</td>
</tr>
<tr>
<td>At 3.5 years of age</td>
<td>737</td>
<td>68.647</td>
<td>7.71</td>
<td>0.28</td>
</tr>
<tr>
<td>At 4.5 years of age</td>
<td>291</td>
<td>68.488</td>
<td>6.89</td>
<td>0.41</td>
</tr>
<tr>
<td>At 5.5 years of age</td>
<td>67</td>
<td>71.746</td>
<td>7.83</td>
<td>0.11</td>
</tr>
<tr>
<td>At 6.5 years of age</td>
<td>31</td>
<td>73.548</td>
<td>5.86</td>
<td>1.05</td>
</tr>
</tbody>
</table>
of mating as a source of variability did not influence the live weight, except at 9 months of age (P<0.05). The determination coefficient R for the live weight varied from 0.58% to 0.85% which showed that a large part of the variation by this trait was due to the influence of the factors included in the model and the results obtained were representative (Table 2).

The animals born in 1993 and 1994 had better weight development and higher and positive LS-estimations for the live weight (Table 3). The estimations of the animals born in 2005 for all ages were under the average for the population, in 1992 – up to 5.5 years, in 1996 – up to 3.5 years and in 1999 – for all ages, except at 3.5 years of age. The estimations for the other years were not unidirectional.

The values of LS-estimations for the live weight at weaning were positive and the highest in lambs from the lines - 5032, 441 and 86, and negative for lines - 7120 and 757 (Table 4). The animals from line 5032 had high and positive LS-estimations for the ages up to 4.5 years as well, with average to high significance. This line definitely had a positive effect by this trait. The animals from lines - 40368, 40199, 583 and 951349 up to 3.5 years of age had negative effect. The line 6182 and the non-linear animals had lower productivity than the average for the herd for all ages. The ewe lambs from lines 5032, 72776 and 068 considerably exceeded the rest animals at 1.5 year of age. The animals from lines 72776 and 068 at 9 months of age had lower live weight than the average for the herd but they compensated and exceeded the average which was probably a peculiarity of the line. The tracing of the weight development of sheep from line 0251 through all ages showed that up to 9 months of age they had negative LS-estimations. This fact was probably due to unfavorable dam’s effect before weaning. At 18 months of age up to 6.5 years the animals from the same line realized their genetic potential by this trait. They are characterized by positive deviation from the average live weight for the herd. An opposite trend was observed in lines 441 and

<table>
<thead>
<tr>
<th>Df</th>
<th>F- criterion</th>
<th>F- test</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>45.86</td>
<td>+++</td>
<td>0.58</td>
</tr>
<tr>
<td>19</td>
<td>1.42</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.07</td>
<td>n.s.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>at 9 months of age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Df</td>
</tr>
<tr>
<td>F- criterion</td>
</tr>
<tr>
<td>F- test</td>
</tr>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Df</th>
<th>F- criterion</th>
<th>F- test</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>71.31</td>
<td>+++</td>
<td>0.68</td>
</tr>
<tr>
<td>19</td>
<td>3.31</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.31</td>
<td>n.s.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>at 1.5 year of age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Df</td>
</tr>
<tr>
<td>F- criterion</td>
</tr>
<tr>
<td>F- test</td>
</tr>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Df</th>
<th>F- criterion</th>
<th>F- test</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>26.42</td>
<td>+++</td>
<td>0.60</td>
</tr>
<tr>
<td>17</td>
<td>1.67</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.61</td>
<td>n.s.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>at 4.5 years of age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Df</td>
</tr>
<tr>
<td>F- criterion</td>
</tr>
<tr>
<td>F- test</td>
</tr>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Df</th>
<th>F- criterion</th>
<th>F- test</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.22</td>
<td>+</td>
<td>0.74</td>
</tr>
<tr>
<td>12</td>
<td>2.05</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.01</td>
<td>n.s.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>at 5.5 years of age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Df</td>
</tr>
<tr>
<td>F- criterion</td>
</tr>
<tr>
<td>F- test</td>
</tr>
<tr>
<td>R</td>
</tr>
</tbody>
</table>
Table 3
LS-estimations of the effect of the year of birth on the live weight in sheep at different ages from the Northeast Bulgarian breed – Shumen type

<table>
<thead>
<tr>
<th>Year of birth</th>
<th>Live weight, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>at weaning</td>
</tr>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>1991</td>
<td>162</td>
</tr>
<tr>
<td>1992</td>
<td>153</td>
</tr>
<tr>
<td>1993</td>
<td>214</td>
</tr>
<tr>
<td>1994</td>
<td>139</td>
</tr>
<tr>
<td>1997</td>
<td>145</td>
</tr>
<tr>
<td>1998</td>
<td>137</td>
</tr>
<tr>
<td>1999</td>
<td>138</td>
</tr>
<tr>
<td>2000</td>
<td>131</td>
</tr>
<tr>
<td>2001</td>
<td>132</td>
</tr>
<tr>
<td>2003</td>
<td>86</td>
</tr>
<tr>
<td>2005</td>
<td>97</td>
</tr>
</tbody>
</table>
Table 4
LS-estimations of the effect of the line on the live weight in sheep at different ages from the Northeast Bulgarian breed – Shumen type

<table>
<thead>
<tr>
<th>Year of birth</th>
<th>Live weight, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>at weaning</td>
</tr>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>0251</td>
<td>51</td>
</tr>
<tr>
<td>068</td>
<td>45</td>
</tr>
<tr>
<td>01035</td>
<td>38</td>
</tr>
<tr>
<td>441</td>
<td>4</td>
</tr>
<tr>
<td>40199</td>
<td>217</td>
</tr>
<tr>
<td>40368</td>
<td>103</td>
</tr>
<tr>
<td>528</td>
<td>44</td>
</tr>
<tr>
<td>576</td>
<td>98</td>
</tr>
<tr>
<td>583</td>
<td>300</td>
</tr>
<tr>
<td>5032</td>
<td>47</td>
</tr>
<tr>
<td>6182</td>
<td>66</td>
</tr>
<tr>
<td>757</td>
<td>32</td>
</tr>
<tr>
<td>7120</td>
<td>23</td>
</tr>
<tr>
<td>7418</td>
<td>103</td>
</tr>
<tr>
<td>72776</td>
<td>76</td>
</tr>
<tr>
<td>86</td>
<td>1</td>
</tr>
<tr>
<td>918</td>
<td>74</td>
</tr>
<tr>
<td>95474</td>
<td>14</td>
</tr>
<tr>
<td>951349</td>
<td>103</td>
</tr>
<tr>
<td>non-lineal</td>
<td>535</td>
</tr>
</tbody>
</table>

Effect of Some Factors on the Live Weight in Sheep at Different Ages...
Table 5
LS-estimations of the effect of type of mating on the live weight in sheep at different ages from the Northeast Bulgarian breed – Shumen type

<table>
<thead>
<tr>
<th>Type of mating</th>
<th>Live weight, kg</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>at weaning</td>
<td>at 9 months</td>
<td>at 1.5 year</td>
<td>at 2.5 years</td>
<td>at 3.5 years</td>
<td>at 4.5 years</td>
<td>at 5.5 years</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>a</td>
<td>n</td>
<td>a</td>
<td>n</td>
<td>a</td>
<td>n</td>
</tr>
<tr>
<td>intraline</td>
<td>49</td>
<td>-0.11</td>
<td>47</td>
<td>0.495</td>
<td>45</td>
<td>-0.87</td>
<td>20</td>
</tr>
<tr>
<td>interline</td>
<td>975</td>
<td>0.097</td>
<td>896</td>
<td>-0.65</td>
<td>838</td>
<td>-0.06</td>
<td>578</td>
</tr>
<tr>
<td>unidentified</td>
<td>950</td>
<td>0.015</td>
<td>879</td>
<td>0.16</td>
<td>814</td>
<td>0.926</td>
<td>609</td>
</tr>
</tbody>
</table>

Table 6
Heritability coefficients (h²) of the live weight in sheep at different ages from the Northeast Bulgarian breed – Shumen type

Type of mating	Live weight, kg									
	at 100 days of age	at 1.5 year of age	at 2.5 years of age	at 3.5 years of age	at 4.5 years of age	at 5.5 years of age	at 6.5 years of age			
	n	H² ± S H²								
intraline	1439	0.817 ± 0.172	123	0.846 ± 0.128	862	0.984 ± 0.172	520	0.948 ± 0.128	356	0.946 ± 0.145

Conclusions

The heritability values of live weight at different ages were high and ranged from 0.94 at 1.5 years of age to 0.296 in animals with completed growth (Table 6). The high degree of genetic diversity in the herd is a prerequisite for successful selection by phenotype even at a young age and the subsequent decrease in values is a logical result from the genotype-environment interaction through the ontogenetic development. The high degree of genetic diversity in the herd is a prerequisite for successful selection by phenotype even at a young age and the subsequent decrease in values is a logical result from the genotype-environment interaction through the ontogenetic development. The high degree of genetic diversity in the herd is a prerequisite for successful selection by phenotype even at a young age and the subsequent decrease in values is a logical result from the genotype-environment interaction through the ontogenetic development.
The year of birth influenced the live weight at all ages studied, highly significant (P<0.001) up to 4.5 years of age and significant (P<0.05) for the rest ages. Differentiation between the breeding lines of the Northeast Bulgarian sheep breed was established by the live weight at different ages. The type of mating as a source of variability did not significantly influence the live weight.

References

Instruction on control of productive traits and complex assessment of sheep from fine fleece direction. (2008) (Bg).

Received February, 23, 2009; accepted for printing April, 24, 2009.